Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Prev Vet Med ; 194: 105423, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34246115

ABSTRACT

Little is known about disease transmission relevant contact rates at the wildlife-livestock interface and the factors shaping them. Indirect contact via shared resources is thought to be important but remains unquantified in most systems, making it challenging to evaluate the impact of livestock management practices on contact networks. Free-ranging wild pigs (Sus scrofa) in North America are an invasive, socially-structured species with an expanding distribution that pose a threat to livestock health given their potential to transmit numerous livestock diseases, such as pseudorabies, brucellosis, trichinellosis, and echinococcosis, among many others. Our objective in this study was to quantify the spatial variations in direct and indirect contact rates among wild pigs and cattle on a commercial cow-calf operation in Florida, USA. Using GPS data from 20 wild pigs and 11 cattle and a continuous-time movement model, we extracted three types of spatial contacts between wild pigs and cattle, including direct contact, indirect contact in the pastoral environment (unknown naturally occurring resources), and indirect contact via anthropogenic cattle resources (feed supplements and water supply troughs). We examined the effects of sex, spatial proximity, and cattle supplement availability on contact rates at the species level and characterized wild pig usage of cattle supplements. Our results suggested daily pig-cattle direct contacts occurred only occasionally, while a significant number of pig-cattle indirect contacts occurred via natural resources distributed heterogeneously across the landscape. At cattle supplements, more indirect contacts occurred at liquid molasses than water troughs or molasses-mineral block tubs due to higher visitation rates by wild pigs. Our results can be directly used for parameterizing epidemiological models to inform risk assessment and optimal control strategies for controlling transmission of shared diseases.


Subject(s)
Animals, Wild , Cattle Diseases , Livestock , Animals , Brucellosis/epidemiology , Brucellosis/veterinary , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/transmission , Disease Management , Echinococcosis/epidemiology , Echinococcosis/veterinary , Female , Pseudorabies/epidemiology , Spatial Analysis , Sus scrofa , Trichinellosis/epidemiology , Trichinellosis/veterinary
2.
Environ Toxicol Chem ; 39(5): 1052-1059, 2020 05.
Article in English | MEDLINE | ID: mdl-32096287

ABSTRACT

Waterfowl are often exposed to and readily accumulate anthropogenic contaminants when foraging in polluted environments. Settling impoundments containing coal combustion waste (CCW) enriched in trace elements such as arsenic (As), selenium (Se), and mercury (Hg) are often used by free-ranging migratory and resident waterfowl and represent potential sources for contaminant uptake. To assess accumulation of CCW contaminants, we experimentally restricted waterfowl to a CCW-contaminated impoundment and quantified trace element burdens in blood, muscle, and liver tissues over known periods of exposure (between 3 and 92 d). From these data we developed models 1) to predict elemental bioaccumulation with increased exposure time, and 2) to predict muscle/liver burdens based on concentrations in blood as a nondestructive sampling method. Although Hg and As did not bioaccumulate in our waterfowl, we observed an increase in Se concentrations in muscle, liver, and blood tissues over the duration of our experiment. Furthermore, we found that blood may be used as an effective nondestructive sampling alternative to predict muscle and liver tissue concentrations in birds contaminated with Se and As through dietary exposure. These data provide unique insights into accumulation rates of contaminants for waterfowl utilizing habitats contaminated with CCW and demonstrate the efficacy of nonlethal sampling of waterfowl to quantify contaminant exposure. Environ Toxicol Chem 2020;39:1052-1059. © 2020 SETAC.


Subject(s)
Coal , Ducks/metabolism , Environmental Monitoring , Trace Elements/analysis , Waste Products , Animals , Arsenic/blood , Ducks/blood , Geography , Liver/metabolism , Mercury/blood , Muscles/metabolism , Selenium/blood
3.
Proc Natl Acad Sci U S A ; 115(34): 8627-8632, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30061399

ABSTRACT

The lack of biomarkers to identify target populations greatly limits the promise of precision medicine for major depressive disorder (MDD), a primary cause of ill health and disability. The endogenously produced molecule acetyl-l-carnitine (LAC) is critical for hippocampal function and several behavioral domains. In rodents with depressive-like traits, LAC levels are markedly decreased and signal abnormal hippocampal glutamatergic function and dendritic plasticity. LAC supplementation induces rapid and lasting antidepressant-like effects via epigenetic mechanisms of histone acetylation. This mechanistic model led us to evaluate LAC levels in humans. We found that LAC levels, and not those of free carnitine, were decreased in patients with MDD compared with age- and sex-matched healthy controls in two independent study centers. Secondary exploratory analyses showed that the degree of LAC deficiency reflected both the severity and age of onset of MDD. Moreover, these analyses showed that the decrease in LAC was larger in patients with a history of treatment-resistant depression (TRD), among whom childhood trauma and, specifically, a history of emotional neglect and being female, predicted the decreased LAC. These findings suggest that LAC may serve as a candidate biomarker to help diagnose a clinical endophenotype of MDD characterized by decreased LAC, greater severity, and earlier onset as well as a history of childhood trauma in patients with TRD. Together with studies in rodents, these translational findings support further exploration of LAC as a therapeutic target that may help to define individualized treatments in biologically based depression subtype consistent with the spirit of precision medicine.


Subject(s)
Acetylcarnitine/blood , Acetylcarnitine/deficiency , Depressive Disorder, Major/blood , Adult , Age Factors , Aged , Carnitine/blood , Female , Humans , Male , Middle Aged , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL